Measurement of the Inelastic Mean Free Path by EELS Analyses of Submicron Spheres

Author:

Bonney Laura A.

Abstract

Accurate measurement of sample thickness is important for analytical electron microscopy (AEM) but is often difficult and tedious. Unlike other thickness measurement methods, with electron energy loss spectroscopy (EELS) thickness may be measured in both amorphous and crystalline specimens and at the same location and orientation at which other data is collected in the electron microscope. Thickness values may be obtained from convergent-beam electron diffraction (CBED) data only if the sample is crystalline with large grains of uniform thickness. Sample thickness may be measured from crystal defects projected through the entire foil, but such defects are not always conveniently located in the area of interest. The distance between contamination spots on the upper and lower surfaces of the specimen may be measured, but this is not considered accurate and contamination is not desirable in microanalysis.Sample thickness t may be determined with EELS by the relation:(1)where It is the total intensity in the EEL spectrum, Iz is the intensity in the zero loss peak, and λ is the inelastic mean free path for energy loss of an incident electron in the sample.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference8 articles.

1. 8 Author gratefully acknowledges Prof. T.F. Kelly for guidance and encouragement, Drs. N. Zreiba and Y.-W. Kim for preparing samples used in this work, and R. J. Casper for keeping feisty microscopes running.

2. The determination of foil thickness by scanning transmission electron microscopy

3. Applications of Energy-Loss Spectroscopy

4. On projected widths of stacking faults used for foil thickness determinations

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TEM Applications of EELS;Electron Energy-Loss Spectroscopy in the Electron Microscope;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3