In situ reversed deformation of aluminum single crystals in the HVEM: a new X-Y straining stage

Author:

Wall M. A.,Kassner M. E.

Abstract

The metal fatigue phenomenon is poorly understood, partially because the dislocation dynamics of reversed deformation have not been well characterized. Little success has been realized with the direct observation of dislocations during in situ cyclic deformation. Problems associated with buckling of the specimen foil occur during applied shear, bending or compression. Buckling can preclude adequate imaging conditions and further complicate the thin foil stress-state. Recent experiments have shown that dislocation movement can be reversed by tensile stressing in alternate perpendicular directions (i.e. 90° rotation of the tensile stress to X and Y directions results in the reversal of the shear stress). Buckling of the specimen foil is also reduced in these experiments.Results from recent in situ reversed deformation experiments are presented here. The experiments were performed on a new straining stage which is a modification of the Sleeswyk- Kassner X-Y stage. The specimen design and preparation procedures have also been modified to facilitate better and more reproducible in situ experiments. The new X-Y straining stage is illustrated in figure 1.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In situ reversed deformation of prefatigued aluminum single crystals in the HVEM;Proceedings, annual meeting, Electron Microscopy Society of America;1996-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3