Effects of occurrence form of soil organic matter on the Atterberg limits and thermal conductivity of clays

Author:

Gui YueORCID,Sang Qingkun,Yin JieORCID

Abstract

Abstract Because of the interfacial interactions between mineral soil particles and soil organic matter (SOM), SOM occurs in various forms in the soil, and the mineral-associated and particulate forms are fundamental. Many recent studies have concentrated on the effects of SOM content and type on the geotechnical behavior of soil. However, the influence of SOM occurrence forms is not well understood, nor is there a scientific classification standard for SOM in geotechnical engineering. The main objectives of this study were to explore the effects of SOM occurrence forms on a few physical properties of clays to develop an engineering classification standard of SOM. First, this paper reviews the interfacial interaction mechanism, factors that influence the relation between mineral soil particles and SOM, and the classification method of SOM in soil science. Three predominant clays (montmorillonite, illite, and kaolinite) were then used as the matrix, and three groups of artificial soil samples with different SOM contents (wu ranging from 0 to 50% by weight) were prepared by adding peat. A chemical extraction method was used to determine the amount of different forms of SOM. Moreover, the Atterberg limits wL (wp) and thermal conductivity λ of artificial soil samples were tested. Based on the experimental results, the relationship between the form of SOM and these physical parameters was established. The experimental results show that the wL (wp) vs wu, and λ vs wu fitted curves were not monotonic but piecewise linear and could be divided into two straight lines with different slopes; wu corresponded to the inflection point of wL (wp) vs wu, and λ vs wu curves were closer to the threshold value wu,2. Finally, a simple engineering classification method of SOM is proposed.

Publisher

Cambridge University Press (CUP)

Reference51 articles.

1. Den Haan, E.J. , & Edil, T.B. (1994). Secondary and tertiary compression of peat. In International Workshop on Advances in Understanding and Modelling the Mechanical Behaviour of Peat (pp. 49–60).

2. The interaction between soil organic matter and soil clay minerals by selective removal and controlled addition of organic matter

3. Effects of biochar on cement stabilised peat soil;Lau;Proceedings of the Institution of Civil Engineers - Ground Improvement,2019

4. Compressibility behaviour of natural and stabilized dredged soils in different organic matter contents

5. Effects of organic matter on the physical and the physicochemical properties of an illitic soil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3