EFFECTS OF TILLAGE INTENSITY, PLANTING TIME AND NITROGEN RATE ON WHEAT YIELD FOLLOWING RICE

Author:

ARORA V. K.,SIDHU A. S.,SANDHU K. S.,THIND S. S.

Abstract

SUMMARYPuddling coarse-textured soils for rice culture in the irrigated tract of the Indo-Gangetic Plains causes high soil strength in the upper layers. This may adversely affect growth and yield of following upland crops. It is possible that no-tillage (NT) in wheat (without residues of preceding rice crop) could aggravate this problem and reduce fertilizer nitrogen (N) use efficiency. In certain production scenarios, NT has been reported to be advantageous because it allows for earlier planting of wheat by eliminating delays caused by tillage. This study examined the combined effects of two crop establishment options for wheat in relation to fertilizer N and planting time following puddled rice cultivation in an irrigated environment of Punjab, northwest India. Combinations of two establishment systems, NT-direct planting and conventional-tillage (CT) with soil disruption to 0.10 m depth in main plots, with two N rates, 120 and 150 kg ha−1 in subplots, were evaluated. Variation in planting time, 31 October (D1) and 7 and 10 November (D2), was used to evaluate effect of planting-earliness. Under D1 in NT, grain yield of wheat was comparable to that under D2 in CT. However, under no advancement of wheat planting in NT, grain yield was 0.2–0.3 t ha−1 less than that in CT. This yield reduction in NT could be overcome by adding 30 kg ha−1 more fertilizer N suggesting that tillage enhanced N use efficiency. These tillage gains are ascribed to the greater extraction of profile stored and applied water and nutrients because of denser crop rooting caused by reduction in soil strength and less weed competition. Higher N use efficiency in CT suggests that farmers could achieve fertilizer N savings with this system. Comparing the tillage systems showed that NT was more cost-effective than CT even after accounting for the cost of additional fertilizer N (saving of Rs. 1685 ha−1) to overcome associated yield penalties under no advancement in planting time.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3