Unravelling causes of poor crop response to applied N and P fertilizers on African soils

Author:

Sileshi Gudeta W.ORCID,Kihara Job,Tamene Lulseged,Vanlauwe Bernard,Phiri Elijah,Jama Bashir

Abstract

Summary A number of studies across sub-Saharan Africa have recently reported poor crop responses and low agronomic use efficiencies of applied nitrogen (AEN), phosphorus (AEP) and potassium (AEK). However, the conditions under which non-responsiveness occurs, its underlying causes and its probability of occurrence on different soil types are not well understood. Using data from 542 sites and 14 soil types in 23 African countries, we provide novel insights into the linkage between lack of response to applied N, P and K, the mineralogy of soils and their resilience to erosion. We estimated mean responses as well as the probabilities (ϕ) of no response in terms of response ratio (RR), yield gain (YG) and agronomic efficiency. Here we defined ‘no response’ as zero agronomic response to fertilizer inputs in a given site and year indexed by either RR ≤ 1, AEN ≤ 0, AEP ≤ 0 or AEK ≤ 0. The highest risks of no response were recorded on the iron-rich Plinthosols (ϕ = 0.26) followed by the aluminium-rich Alisols (ϕ = 0.16) and the erosion-prone Lixisols (ϕ = 0.16) and Leptosols (ϕ = 0.13). In terms of yield gains, the highest risk of low response (i.e., YG ≤ 0.5) was recorded on Alisols (ϕ = 0.47) and the lowest on Fluvisols (ϕ = 0.05). Cambisols, Fluvisols, Luvisols and Nitisols were deemed highly responsive to NPK fertilizer. The risks of no response were significantly higher on soils derived from siliceous than mafic parent materials, soil types with low resilience to erosion, soils with low-activity clays and high P fixation capacity. It is concluded that maize grain yields can exceed 3 t ha-1 with high probability (ϕ > 0.80) on Andosols, Nitisols and Vertisols, but with very low probability (ϕ < 0.30) on Alisols and Arenosols. It is also concluded that across soil types and agroecological zones, the risk of no response is up to two times more on farmers’ fields than on research stations. Here, we discuss the implications of these finding for the design and location of future agronomic trials. We also provide insights to guide the targeting of fertilizer subsidies where nutrients can be more efficiently used.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3