A data-mining approach for developing site-specific fertilizer response functions across the wheat-growing environments in Ethiopia

Author:

Abera WuletawuORCID,Tamene Lulseged,Tesfaye Kindie,Jiménez Daniel,Dorado Hugo,Erkossa Teklu,Kihara Job,Ahmed Jemal Seid,Amede Tilahun,Ramirez-Villegas Julian

Abstract

Summary The use of chemical fertilizers is among the main innovations brought by the 1960s Green Revolution. In Ethiopia, fertilizer application during the last four decades has led to significant yield gains, yet yield remains below its potential across much of the country. One of the main challenges responsible for low yield response to fertilizer application has been the use of ‘blanket’ recommendations, whereby no tailoring of fertilizer amount and frequency is done based on soil requirements. As a result, the amount of fertilizer applied ranges widely, and can be either sub- or supra-optimal. There is thus an increasing need for site-specific fertilizer recommendations which take into account site characteristics such as climate variables (temperature, rainfall, and solar radiation); soil factors (soil organic carbon, moisture, pH, texture, cation exchange capacity, and level of macro- and micronutrients); and topographic position indices. This article reports on a data-mining approach we developed on a large dataset of 6585 wheat (Triticum aestivum) field trials. The dataset includes detailed, site-specific biophysical variables to create nutrient response functions that can guide optimal site-specific fertilizer application. The approach used a machine-learning model (random forest) to capture the relationship between nutrients – nitrogen (N), phosphorous (P), potassium (K), and sulfur (S) – and wheat yield. The model explained about 83, 82, 47, and 69% of variances of yield for N, P, K, and S omission, respectively, with consistent performance across training and testing datasets. Expectedly, for N and P omission data, the most important explanatory variables are nutrient rate, followed by soil organic carbon and soil pH. For K and S, however, climatic variables played an important role alongside nutrient rates. The site-specific yield–fertilizer response curves derived from our model are highly variable from location to location, as they are affected by the climatic, soil, or topographic conditions of the site. Importantly, using principal component analysis, we showed that the shape of the fertilizer response curves is a result of the multiple environmental factors (including soil, topography, and climate) that are at play at a given site, rather than of a specific dominant one. The research output is expected to respond to the national policy demands for a sound method to identify the optimal fertilizer rate to increase economic returns of fertilizer investments and take fertilizer utilization research one step further.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3