Abstract
SUMMARYYield and growth records from an oil palm planting density experiment, comparing 56, 110, 148 and 186 palms ha−1, and a progeny experiment, planted at 115 and 143 palms ha−1, were used to estimate the partitioning of assimilates into those used for structural dry matter (DM) production, and those used for growth and maintenance respiration.Gross photosynthetic assimilation (A) for closed canopies was estimated from absorbed photosynthetically active radiation (PAR), derived from actual sunshine hours, and the assimilation-light response curve, to be 128 t CH2O ha−1year−1. A for non-closed canopies was calculated by correcting for the degree of light transmission, which in turn was estimated from recorded leaf area index values (L), i.e. the total leaf area per unit ground area.Forty-eight percent of gross assimilation was used for DM production, about half of this being lost in growth respiration. The remaining 52% was lost in maintenance respiration. These losses appeared to level off before crown expansion was completed, and since trunk biomass continued to increase, maintenance respiration per unit biomass (R) decreased with age.An increase in planting density reduced the assimilates available for bunch DM, had little effect on those for vegetative growth, but strongly reduced maintenance respiration and, since biomass was little affected, reduced R. Assimilates for bunch DM ha−1reached a maximum at L = 5.6.The observed trends in R as a function of palm age and planting density merit further study.
Publisher
Cambridge University Press (CUP)
Subject
Agronomy and Crop Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献