THE WATER RELATIONS AND IRRIGATION REQUIREMENTS OF OIL PALM (ELAEIS GUINEENSIS): A REVIEW

Author:

CARR M. K. V.

Abstract

SUMMARYThe results of research on the water relations and irrigation need of oil palm are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information is given on the centres of origin (West Africa) and of production of oil palm (Malaysia and Indonesia), but the crop is now moving into drier regions. The effects of water stress on the development processes of the crop are summarized followed by reviews of its water relations, water use and water productivity. The majority of the recent research published in the international literature has been conducted in Malaysia and in Francophone West Africa. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit (ca. three years) means that causal links between environmental factors (especially water) and yield are difficult to establish. The majority of roots are found in the 0–0.6 m soil horizons, but roots can reach depths greater than 5 m and spread laterally up to 25 m from the trunk. The stomata are a sensitive indicator of plant water status and play an important role in controlling water loss. Stomatal conductance and photosynthesis are negatively correlated with the saturation deficit of the air. It is not easy to measure the actual water use of oil palm, the best estimates for mature palms suggesting crop evapotranspiration (ETc) rates of 4–5 mm d−1in the monsoon months (equivalent to 280–350 l palm−1d−1). For well-watered mature palms, crop coefficient (Kc) values are in the range 0.8–1.0. Although the susceptibility of oil palm to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation. The best estimates are 20–25 kg fresh fruit bunches ha−1mm−1(or a yield loss of about 10% for every 100 mm increase in the soil water deficit). These increases are only realized in the third and subsequent years after the introduction of irrigation and follow an increase in the number of fruit bunches as a result of an improvement in the sex ratio (female/total inflorescence production) and a reduction in the abortion of immature inflorescences. There is no agreement on the allowable depletion of the available soil water, or on the associated optimum irrigation interval. Drip irrigation has been used successfully on oil palm.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

Reference76 articles.

1. Oil palm irrigation. Initial results obtained by PHCI (Ivory Coast);Prioux;Oléagineux,1992

2. Irrigation of oil palms – a review;Corley;Journal of Plantation Crops,1996

3. Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability

4. THE WATER RELATIONS AND IRRIGATION REQUIREMENTS OF SUGAR CANE (SACCHARUM OFFICINARUM): A REVIEW

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3