DIFFERENT WAYS TO CUT A CAKE: COMPARING EXPERT-BASED AND STATISTICAL TYPOLOGIES TO TARGET SUSTAINABLE INTENSIFICATION TECHNOLOGIES, A CASE-STUDY IN SOUTHERN ETHIOPIA

Author:

BERRE DAVID,BAUDRON FRÉDÉRIC,KASSIE MENALE,CRAUFURD PETER,LOPEZ-RIDAURA SANTIAGO

Abstract

SUMMARYUnderstanding farm diversity is essential to delineate recommendation domains for new technologies, but diversity is a subjective concept, and can be described differently depending on the way it is perceived. Historically, new technologies have been targeted primarily based on agro-ecological conditions, largely ignoring socioeconomic conditions. Based on 273 farm households' surveys in Ethiopia, we compare two approaches for the delineation of farm type recommendation domains for crop and livestock technologies: one based on expert knowledge and one based on statistical methods. The expert-based typology used a simple discriminant key for stakeholders in the field to define four farm types based on Tropical Livestock Unit, total cultivated surface and the ratio of these two indicators. This simple key took only a few minutes to make inferences about the potential of adoption of crop and livestock technologies. The PCA-HC analysis included a greater number of variables describing the farm (land use, household size, cattle, fertilizer, off-farm work, hiring labour, production). This analysis emphasized the multi-dimensional potential of such a statistical approach and, in principle, its usefulness to grasp the full complexity of farming systems to identify their needs in crop and livestock technologies. A sub-sampling approach was used to test the impact of data selection on the diversity represented in the statistical approach. Our results show that diversity structure is significantly impacted according to the choice of a sub-sample of 15 of the 20 variables available. This paper shows the complementarity of the two approaches and demonstrates the influence of data selection within large baseline data sets on the total diversity represented in the clusters identified.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3