MODELLING YIELDS OF NON-IRRIGATED WINTER WHEAT IN A SEMI-ARID MEDITERRANEAN ENVIRONMENT BASED ON DROUGHT VARIABILITY

Author:

ASCHONITIS V. G.,LITHOURGIDIS A. S.,DAMALAS C. A.,ANTONOPOULOS V. Z.

Abstract

SUMMARYRegression models for the prediction of grain yields of non-irrigated winter wheat in a semi-arid Mediterranean environment were developed based on drought variability. Twenty-five years (1980–2004) of climate data and yield data from four soils (sandy loam, clay, clay loam and sandy clay loam soil) in northern Greece were used for this purpose. Two variables were selected as explanatory variables of the models: (a) the monthly precipitation versus the monthly reference evapotranspiration ratio (P/ETo), which describes the monthly drought and consequently the water deficit conditions during the wheat-growing season and (b) the mean observed yield (y) of each soil, which indirectly describes the intrinsic fertility of the soils. A resampling technique using subsets of the data (bootstrapping) was applied to estimate the coefficients of the models, to assess the uncertainty of the selected explanatory variables and to validate the models. The models showed adequate predictive ability of wheat yields, defining the time and intensity of drought effects. The most crucial period for winter wheat was found to be primarily the vegetative-reproductive stage period between late winter and mid-spring (i.e. February to April). Soil clay content was found to be the most representative parameter in describing most of the physico-chemical parameters and properties of the soils and consequently the mean yield, indicating that yield is non-linearly correlated with most soil properties. With the proposed models, yield gap (YG) predictions between two growing seasons of the selected soils presented 84% accuracy in all years in the identification of the correct signal (+ or −) of yield increase or decrease, respectively, and adequate performance in the prediction of the mean YG.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3