EFFECTS OF WATER AVAILABILITY AND VINE HARVESTING FREQUENCY ON THE PRODUCTIVITY OF SWEET POTATO IN SOUTHERN MOZAMBIQUE. IV. RADIATION INTERCEPTION, DRY MATTER PRODUCTION AND PARTITIONING

Author:

GOMES F.,CARR M. K. V.,SQUIRE G. R.

Abstract

In Mozambique, the sweet potato (Ipomoea batatas) is grown both as a leafy vegetable, the terminal shoots or vines being progressively harvested during the season, and as a root crop. It is produced in the dry season, in areas with a high water table or with irrigation, and in the rainy season. This paper reports the results of measurements made during the 1995 dry season to evaluate the effects of water availability and the frequency of vine harvesting on the processes of radiation interception, dry matter production and partitioning. An irrigated crop (cv. TIS 2534) with a single, end of season vine-harvest (H1) intercepted 71% of the total solar radiation, reducing to 52% with weekly (H4) harvests. The corresponding values for a rain-fed crop were 33 and 20% respectively. When the leaf area index (L) exceeded 3–4, virtually full interception of photosynthetically active radiation (PAR) occurred, except when frequent vine-harvests modified the architecture of the leaf canopy. The extinction coefficient (k, PAR) was highly variable: at a given leaf area, interception was greatest earlier in the season, with infrequent harvests and with irrigation. Total dry matter production (vines, foliage and storage roots), over a period of 161 days, reached 23 t ha−1 in the single harvest (H1), irrigated crop, less when the vines were harvested weekly (H4). The corresponding value for the rain-fed crop, which was able to resume active growth immediately after a rainfall event, following a prolonged dry period, was 7 t ha−1. The efficiency of conversion of PAR into dry matter (εs) was 2.74 g MJ−1 in the irrigated treatments combined, decreasing to around 73% of this without irrigation. The value of εs appeared not to be influenced by dry air or high temperatures. The reduction in εs due to drought was less than the corresponding reduction in intercepted PAR. Increasing the frequency of vine harvests increased the partitioning of assimilates to vines. Irrigation had similar effects early in the season, but afterwards it encouraged preferential growth of the storage roots. The end of season harvest index (h) for vines increased with harvesting frequency from, for example, 0.08 (H1) to 0.38 (H4) in the irrigated crop. By comparison, irrigation increased ‘h’ for storage roots from 0.24 (rain-fed) to 0.57 in the H1 treatment. The total harvest index (vines plus roots) increased with the number of vine harvests from 0.32 (H1) to 0.55 (H4) in the rain-fed crop, and from 0.62 (H1) to 0.72 (H4) in the irrigated crop. Clearly, ‘h’ is not a conservative parameter in the sweet potato, but is sensitive to crop management practices and to soil water availability.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3