EFFECT OF VARYING MAIZE DENSITIES ON INTERCROPPED MAIZE AND SOYBEAN IN NEPAL

Author:

PRASAD R. B.,BROOK R. M.

Abstract

Maize and soybean are commonly intercropped in the drier zones of the western mid-hills in Nepal, but farmers report that productivity of soybean has been declining in recent years. Two researcher managed on-farm field experiments were conducted in the mid-hills environment of Nepal during 2001 and 2002, and one glasshouse experiment at the University of Wales, Bangor during 2003, to determine whether varying densities of maize and soybean influenced productivity of the system and to what extent soybean exhibited adaptation to shade. In neither season was maize yield affected by the presence of soybean, but grain yield of soybean was reduced in mixture by means of 59 and 53% during 2001 and 2002 respectively. Biomass and grain yield of maize were greatest at 53×103 plants ha−1 and least at the lowest density, whilst conversely biomass and grain yield of soybean increased. With increasing maize density, rates of accumulation of dry matter and leaf area index also increased, the latter resulting in decreasing transmission of light to the intercropped soybean. Soybean exhibited no photosynthetic adaptation to shade, but the specific leaf area was greater in artificially shaded and intercropped plants. Land equivalent ratios of all intercrops were greater than unity (1.30 to 1.45), indicating higher efficiency of intercropping compared to sole crops. Given the low plasticity in response of the maize canopy to variations in density, it is suggested that soybean could be better grown under maize by increasing between-row spacing of maize from 0.75 to 1.0 m to improve light transmission to the understorey, resulting in higher overall productivity of the intercropping system, and also that soybean germplasm be screened for adaptation to shade.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3