Author:
CUTLER JONATHAN,RADCLIFFE A. J.
Abstract
The study of extremal problems related to independent sets in hypergraphs is a problem that has generated much interest. There are a variety of types of independent sets in hypergraphs depending on the number of vertices from an independent set allowed in an edge. We say that a subset of vertices isj-independentif its intersection with any edge has size strictly less thanj. The Kruskal–Katona theorem implies that in anr-uniform hypergraph with a fixed size and order, the hypergraph with the mostr-independent sets is the lexicographic hypergraph. In this paper, we use a hypergraph regularity lemma, along with a technique developed by Loh, Pikhurko and Sudakov, to give an asymptotically best possible upper bound on the number ofj-independent sets in anr-uniform hypergraph.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献