An Extension of Foster's Network Theorem

Author:

Tetali Prasad

Abstract

Consider an electrical network onnnodes with resistorsrijbetween nodesiandj. LetRijdenote theeffective resistancebetween the nodes. Then Foster's Theorem [5] asserts thatwhereijdenotesiandjare connected by a finiterij. In [10] this theorem is proved by making use of random walks. The classical connection between electrical networks and reversible random walks implies a corresponding statement for reversible Markov chains. In this paper we prove an elementary identity for ergodic Markov chains, and show that this yields Foster's theorem when the chain is time-reversible.We also prove a generalization of aresistive inverseidentity. This identity was known for resistive networks, but we prove a more general identity for ergodic Markov chains. We show that time-reversibility, once again, yields the known identity. Among other results, this identity also yields an alternative characterization of reversibility of Markov chains (see Remarks 1 and 2 below). This characterization, when interpreted in terms of electrical currents, implies thereciprocity theoremin single-source resistive networks, thus allowing us to establish the equivalence ofreversibilityin Markov chains andreciprocityin electrical networks.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Randomized Gossiping With Effective Resistance Weights: Performance Guarantees and Applications;IEEE Transactions on Control of Network Systems;2022-06

2. Resistance distances in vertex-weighted complete multipartite graphs;Applied Mathematics and Computation;2021-11

3. Spanning trees in complete bipartite graphs and resistance distance in nearly complete bipartite graphs;Discrete Applied Mathematics;2020-09

4. A New Proof of Foster’s First Theorem;The American Mathematical Monthly;2019-12-19

5. On resistance distance of Markov chain and its sum rules;Linear Algebra and its Applications;2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3