Abstract
For every n consider a subset Hn of the patterns of length n over a fixed finite alphabet. The limit distribution of the waiting time until each element of Hn appears in an infinite sequence of independent, uniformly distributed random letters was determined in an earlier paper. This time we prove that these waiting times are getting independent as n → ∞. Our result is used for applying the converse part of the Borel–Cantelli lemma to problems connected with such waiting times, yielding thus improvements on some known theorems.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献