Local Resilience and Hamiltonicity Maker–Breaker Games in Random Regular Graphs

Author:

BEN-SHIMON SONNY,KRIVELEVICH MICHAEL,SUDAKOV BENNY

Abstract

For an increasing monotone graph propertythelocal resilienceof a graphGwith respect tois the minimalrfor which there exists a subgraphHGwith all degrees at mostr, such that the removal of the edges ofHfromGcreates a graph that does not possess. This notion, which was implicitly studied for somead hocproperties, was recently treated in a more systematic way in a paper by Sudakov and Vu. Most research conducted with respect to this distance notion focused on the binomial random graph model(n, p) and some families of pseudo-random graphs with respect to several graph properties, such as containing a perfect matching and being Hamiltonian, to name a few. In this paper we continue to explore the local resilience notion, but turn our attention to random and pseudo-randomregulargraphs of constant degree. We investigate the local resilience of the typical randomd-regular graph with respect to edge and vertex connectivity, containing a perfect matching, and being Hamiltonian. In particular, we prove that for every positive ϵ and large enough values ofd, with high probability, the local resilience of the randomd-regular graph,n, d, with respect to being Hamiltonian, is at least (1−ϵ)d/6. We also prove that for the binomial random graph model(n, p), for every positive ϵ > 0 and large enough values ofK, ifp>$\frac{K\ln n}{n}$then, with high probability, the local resilience of(n, p) with respect to being Hamiltonian is at least (1−ϵ)np/6. Finally, we apply similar techniques to positional games, and prove that ifdis large enough then, with high probability, a typical randomd-regular graphGis such that, in the unbiased Maker–Breaker game played on the edges ofG, Maker has a winning strategy to create a Hamilton cycle.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast winning strategies for Staller in the Maker–Breaker domination game;Discrete Applied Mathematics;2024-02

2. Spanning Trees at the Connectivity Threshold;SIAM Journal on Discrete Mathematics;2022-07-11

3. Discrepancies of spanning trees and Hamilton cycles;Journal of Combinatorial Theory, Series B;2022-05

4. Dirac’s theorem for random regular graphs;Combinatorics, Probability and Computing;2020-08-28

5. Hamiltonicity in random graphs is born resilient;Journal of Combinatorial Theory, Series B;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3