Erdős–Ko–Rado in Random Hypergraphs

Author:

BALOGH JÓZSEF,BOHMAN TOM,MUBAYI DHRUV

Abstract

Let 3 ≤k<n/2. We prove the analogue of the Erdős–Ko–Rado theorem for the randomk-uniform hypergraphGk(n,p) whenk< (n/2)1/3; that is, we show that with probability tending to 1 asn→ ∞, the maximum size of an intersecting subfamily ofGk(n,p) is the size of a maximum trivial family. The analogue of the Erdős–Ko–Rado theorem does not hold for allpwhenkn1/3.We give quite precise results fork<n1/2−ϵ. For largerkwe show that the random Erdős–Ko–Rado theorem holds as long aspis not too small, and fails to hold for a wide range of smaller values ofp. Along the way, we prove that every non-trivial intersectingk-uniform hypergraph can be covered byk2k+ 1 pairs, which is sharp as evidenced by projective planes. This improves upon a result of Sanders [7]. Several open questions remain.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Sharp Threshold for a Random Version of Sperner's Theorem;Random Structures & Algorithms;2024-09-08

2. Erdős–Ko–Rado theorem in Peisert-type graphs;Canadian Mathematical Bulletin;2023-08-04

3. Sharp threshold for the Erdős–Ko–Rado theorem;Random Structures & Algorithms;2022-04-16

4. Triangle-Free Subgraphs of Hypergraphs;Graphs and Combinatorics;2021-07-28

5. On Erdős–Ko–Rado for random hypergraphs I;Combinatorics, Probability and Computing;2019-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3