Abstract
Let σ, π be two permutations selected at random from the uniform distribution on the symmetric group Sn. By a result of Dixon [5], the subgroup G generated by σ, π is almost always (i.e. with probability approaching 1 as n → ∞) either Sn or the alternating group An. We prove that the diameter of the Cayley graph of G defined by {σ, π} is almost always not greater than exp ((½ + o(l)). (In n)2).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献