Author:
DIETZFELBINGER MARTIN,ROWE JONATHAN E.,WEGENER INGO,WOELFEL PHILIPP
Abstract
We analyse a simple random process in which a token is moved in the interval A = {0, . . ., n}. Fix a probability distribution μ over D = {1, . . ., n}. Initially, the token is placed in a random position in A. In round t, a random step sized is chosen according to μ. If the token is in position x ≥ d, then it is moved to position x − d. Otherwise it stays put. Let TX be the number of rounds until the token reaches position 0. We show tight bounds for the expectation Eμ(TX) of TX for varying distributions μ. More precisely, we show that $\min_\mu\{\E_\mu(T_X)\}=\Theta\bigl((\log n)^2\bigr)$. The same bounds are proved for the analogous continuous process, where step sizes and token positions are real values in [0, n + 1), and one measures the time until the token has reached a point in [0, 1). For the proofs, a novel potential function argument is introduced. The research is motivated by the problem of approximating the minimum of a continuous function over [0, 1] with a ‘blind’ optimization strategy.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献