Author:
BALOGH JÓZSEF,LEE CHOONGBUM,SAMOTIJ WOJCIECH
Abstract
In this paper we extend a classical theorem of Corrádi and Hajnal into the setting of sparse random graphs. We show that ifp(n) ≫ (logn/n)1/2, then asymptotically almost surely every subgraph ofG(n,p) with minimum degree at least (2/3 +o(1))npcontains a triangle packing that covers all but at mostO(p−2) vertices. Moreover, the assumption onpis optimal up to the (logn)1/2factor and the presence of the set ofO(p−2) uncovered vertices is indispensable. The main ingredient in the proof, which might be of independent interest, is an embedding theorem which says that if one imposes certain natural regularity conditions on all three pairs in a balanced 3-partite graph, then this graph contains a perfect triangle packing.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献