Avoiding Arrays of Odd Order by Latin Squares

Author:

ANDRÉN LINA J.,CASSELGREN CARL JOHAN,ÖHMAN LARS-DANIEL

Abstract

We prove that there is a constantcsuch that, for each positive integerk, every (2k+ 1) × (2k+ 1) arrayAon the symbols (1,. . .,2k+1) with at mostc(2k+1) symbols in every cell, and each symbol repeated at mostc(2k+1) times in every row and column isavoidable; that is, there is a (2k+1) × (2k+1) Latin squareSon the symbols 1,. . .,2k+1 such that, for eachi,j∈ {1,. . .,2k+1}, the symbol in position (i,j) ofSdoes not appear in the corresponding cell inA. This settles the last open case of a conjecture by Häggkvist. Using this result, we also show that there is a constant ρ, such that, for any positive integern, if each cell in ann×narrayBis assigned a set ofm≤ ρnsymbols, where each set is chosen independently and uniformly at random from {1,. . .,n}, then the probability thatBis avoidable tends to 1 asn→ ∞.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference12 articles.

1. A note on latin squares with restricted support

2. Regular spanning subgraphs of bipartite graphs of high minimum degree;Csaba;Electron. J. Combin.,2007

3. Avoiding partial Latin squares and intricacy

4. Avoidable partial Latin squares of order 4m+1;Cavenagh;Ars Combin.,2010

5. Certain properties of nonnegative matrices and their permanents;Brègman;Dokl. Akad. Nauk SSSR,1973

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Threshold for Steiner triple systems;Geometric and Functional Analysis;2023-06-19

2. Avoiding and Extending Partial Edge Colorings of Hypercubes;Graphs and Combinatorics;2022-04-04

3. Restricted Extension of Sparse Partial Edge Colorings of Complete graphs;The Electronic Journal of Combinatorics;2021-04-09

4. Restricted extension of sparse partial edge colorings of hypercubes;Discrete Mathematics;2020-11

5. On Restricted Colorings of $$\text{(d,s)}$$-Edge Colorable Graphs;Graphs and Combinatorics;2020-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3