Randomized Rumour Spreading: The Effect of the Network Topology

Author:

PANAGIOTOU KONSTANTINOS,PÉREZ-GIMÉNEZ XAVIER,SAUERWALD THOMAS,SUN HE

Abstract

We consider the popular and well-studied push model, which is used to spread information in a given network with n vertices. Initially, some vertex owns a rumour and passes it to one of its neighbours, which is chosen randomly. In each of the succeeding rounds, every vertex that knows the rumour informs a random neighbour. It has been shown on various network topologies that this algorithm succeeds in spreading the rumour within O(log n) rounds. However, many studies are quite coarse and involve huge constants that do not allow for a direct comparison between different network topologies. In this paper, we analyse the push model on several important families of graphs, and obtain tight runtime estimates. We first show that, for any almost-regular graph on n vertices with small spectral expansion, rumour spreading completes after log2n + log n+o(log n) rounds with high probability. This is the first result that exhibits a general graph class for which rumour spreading is essentially as fast as on complete graphs. Moreover, for the random graph G(n,p) with p=c log n/n, where c > 1, we determine the runtime of rumour spreading to be log2n + γ (c)log n with high probability, where γ(c) = clog(c/(c−1)). In particular, this shows that the assumption of almost regularity in our first result is necessary. Finally, for a hypercube on n=2d vertices, the runtime is with high probability at least (1+β) ⋅ (log2n + log n), where β > 0. This reveals that the push model on hypercubes is slower than on complete graphs, and thus shows that the assumption of small spectral expansion in our first result is also necessary. In addition, our results combined with the upper bound of O(log n) for the hypercube (see [11]) imply that the push model is faster on hypercubes than on a random graph G(n, clog n/n), where c is sufficiently close to 1.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuous-Time Stochastic Analysis of Rumor Spreading with Multiple Operations;Methodology and Computing in Applied Probability;2023-10-23

2. Discovering Important Nodes of Complex Networks Based on Laplacian Spectra;IEEE Transactions on Circuits and Systems I: Regular Papers;2023-10

3. Continuous-time stochastic analysis of rumor spreading with multiple operations;2023-07-27

4. Stochastic Analysis of Rumor Spreading with Multiple Pull Operations in Presence of Non-cooperative Nodes;Computer Performance Engineering and Stochastic Modelling;2023

5. Analysis of Rumor Spreading with 2-pull or 3-pull Operations;2021 IEEE 20th International Symposium on Network Computing and Applications (NCA);2021-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3