Author:
DUDEK ANDRZEJ,PRAŁAT PAWEŁ
Abstract
The size-Ramsey number $\^{r} $(F) of a graph F is the smallest integer m such that there exists a graph G on m edges with the property that every colouring of the edges of G with two colours yields a monochromatic copy of F. In 1983, Beck provided a beautiful argument that shows that $\^{r} $(Pn) is linear, solving a problem of Erdős. In this note, we provide another proof of this fact that actually gives a better bound, namely, $\^{r} $(Pn) < 137n for n sufficiently large.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献