Author:
Alishahi Meysam,Hossein Hajiabolhassan
Abstract
AbstractIn an earlier paper, the present authors (2015) introduced thealtermatic numberof graphs and used Tucker’s lemma, an equivalent combinatorial version of the Borsuk–Ulam theorem, to prove that the altermatic number is a lower bound for chromatic number. A matching Kneser graph is a graph whose vertex set consists of all matchings of a specified size in a host graph and two vertices are adjacent if their corresponding matchings are edge-disjoint. Some well-known families of graphs such as Kneser graphs, Schrijver graphs and permutation graphs can be represented by matching Kneser graphs. In this paper, unifying and generalizing some earlier works by Lovász (1978) and Schrijver (1978), we determine the chromatic number of a large family of matching Kneser graphs by specifying their altermatic number. In particular, we determine the chromatic number of these matching Kneser graphs in terms of the generalized Turán number of matchings.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献