Abstract
The numbers of spanning trees, Hamilton cycles and perfect matchings in a random graph Gnm are shown to be asymptotically normal if m is neither too large nor too small. At the lowest limit m ≍ n3/2, these numbers are asymptotically log-normal. For Gnp, the numbers are asymptotically log-normal for a wide range of p, including p constant. The same results are obtained for random directed graphs and bipartite graphs. The results are proved using decomposition and projection methods.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献