Author:
CZYGRINOW ANDRZEJ,DeBIASIO LOUIS,KIERSTEAD H. A.,MOLLA THEODORE
Abstract
Hajnal and Szemerédi proved that every graph G with |G| = ks and δ(G)⩾ k(s − 1) contains k disjoint s-cliques; moreover this degree bound is optimal. We extend their theorem to directed graphs by showing that every directed graph $\vv G$ with |$\vv G$| = ks and δ($\vv G$) ⩾ 2k(s − 1) − 1 contains k disjoint transitive tournaments on s vertices, where δ($\vv G$)= minv∈V($\vv G$)d−(v)+d+(v). Our result implies the Hajnal–Szemerédi theorem, and its degree bound is optimal. We also make some conjectures regarding even more general results for multigraphs and partitioning into other tournaments. One of these conjectures is supported by an asymptotic result.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献