The Longest Minimum-Weight Path in a Complete Graph

Author:

ADDARIO-BERRY LOUIGI,BROUTIN NICOLAS,LUGOSI GÁBOR

Abstract

We consider the minimum-weight path between any pair of nodes of the n-vertex complete graph in which the weights of the edges are i.i.d. exponentially distributed random variables. We show that the longest of these minimum-weight paths has about α* log n edges, where α* ≈ 3.5911 is the unique solution of the equation α log α − α = 1. This answers a question posed by Janson [8].

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-Range First-Passage Percolation on the Torus;Journal of Statistical Physics;2024-08-27

2. Modifications of the Floyd-Warshall algorithm with nearly quadratic expected-time;Ars Mathematica Contemporanea;2021-04-13

3. Diameter of the Stochastic Mean-Field Model of Distance;Combinatorics, Probability and Computing;2017-08-07

4. Random Shortest Paths: Non-Euclidean Instances for Metric Optimization Problems;Algorithmica;2014-06-19

5. Shortest-Weight Paths in Random Regular Graphs;SIAM Journal on Discrete Mathematics;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3