Author:
COLLIER-CARTAINO CLAYTON,GRABER NATHAN,JIANG TAO
Abstract
Anr-uniform hypergraph is called anr-graph. A hypergraph islinearif every two edges intersect in at most one vertex. Given a linearr-graphHand a positive integern, thelinear Turán numberexL(n,H) is the maximum number of edges in a linearr-graphGthat does not containHas a subgraph. For each ℓ ≥ 3, letCrℓdenote ther-uniform linear cycle of length ℓ, which is anr-graph with edgese1, . . .,eℓsuch that, for alli∈ [ℓ−1], |ei∩ei+1|=1, |eℓ∩e1|=1 andei∩ej= ∅ for all other pairs {i,j},i≠j. For allr≥ 3 and ℓ ≥ 3, we show that there exists a positive constantc=cr,ℓ, depending onlyrand ℓ, such that exL(n,Crℓ) ≤cn1+1/⌊ℓ/2⌋. This answers a question of Kostochka, Mubayi and Verstraëte [30]. For even ℓ, our result extends the result of Bondy and Simonovits [7] on the Turán numbers of even cycles to linear hypergraphs.Using our results on linear Turán numbers, we also obtain bounds on the cycle-complete hypergraph Ramsey numbers. We show that there are positive constantsa=am,randb=bm,r, depending only onmandr, such that\begin{equation} R(C^r_{2m}, K^r_t)\leq a \Bigl(\frac{t}{\ln t}\Bigr)^{{m}/{(m-1)}} \quad\text{and}\quad R(C^r_{2m+1}, K^r_t)\leq b t^{{m}/{(m-1)}}. \end{equation}
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Reference41 articles.
1. Wei V. K. (1981) A lower bound on the stability number of a simple graph. Technical memorandum TM 81-11217-9, Bell Laboratories.
2. Méroueh A. The Ramsey number of loose cycles versus cliques. arXiv:1504.03668
3. On Arithmetic Progressions of Cycle Lengths in Graphs
4. A note on odd cycle-complete graph Ramsey numbers;Sudakov;Electron. J. Combin.,2002
5. Triple systems with no six points carrying three triangles.;Ruzsa;Colloq. Math. Soc. J. Bolyai,1978
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献