The Evolution of the Cover Time

Author:

BARLOW MARTIN T.,DING JIAN,NACHMIAS ASAF,PERES YUVAL

Abstract

The cover time of a graph is a celebrated example of a parameter that is easy to approximate using a randomized algorithm, but for which no constant factor deterministic polynomial time approximation is known. A breakthrough due to Kahn, Kim, Lovász and Vu [25] yielded a (log logn)2 polynomial time approximation. We refine the upper bound of [25], and show that the resulting bound is sharp and explicitly computable in random graphs. Cooper and Frieze showed that the cover time of the largest component of the Erdős–Rényi random graph G(n, c/n) in the supercritical regime with c > 1 fixed, is asymptotic to ϕ(c)nlog2n, where ϕ(c) → 1 as c ↓ 1. However, our new bound implies that the cover time for the critical Erdős–Rényi random graph G(n, 1/n) has order n, and shows how the cover time evolves from the critical window to the supercritical phase. Our general estimate also yields the order of the cover time for a variety of other concrete graphs, including critical percolation clusters on the Hamming hypercube {0, 1}n, on high-girth expanders, and on tori ℤdn for fixed large d. This approach also gives a simpler proof of a result of Aldous [2] that the cover time of a uniform labelled tree on k vertices is of order k3/2. For the graphs we consider, our results show that the blanket time, introduced by Winkler and Zuckerman [45], is within a constant factor of the cover time. Finally, we prove that for any connected graph, adding an edge can increase the cover time by at most a factor of 4.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference45 articles.

1. Lollipop graphs are extremal for commute times

2. Component behavior near the critical point of the random graph process

3. The Galton–Watson process with mean one and finite variance;Kesten;Teor. Verojatnost. i Primenen.,1966

4. Critical random graphs: Diameter and mixing time

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convergence of blanket times for sequences of random walks on critical random graphs;Combinatorics, Probability and Computing;2023-01-09

2. On the Cover Time of the Emerging Giant;SIAM Journal on Discrete Mathematics;2022-07-21

3. Analytical results for the distribution of cover times of random walks on random regular graphs;Journal of Physics A: Mathematical and Theoretical;2021-12-08

4. A Spectral Characterization for Concentration of the Cover Time;Journal of Theoretical Probability;2019-10-01

5. Moduli of continuity of local times of random walks on graphs in terms of the resistance metric;Transactions of the London Mathematical Society;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3