Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions

Author:

SUBRAMANIAN G.,KOCH DONALD L.

Abstract

A theoretical framework is developed to describe, in the limit of small but finite Re, the evolution of dilute clusters of sedimenting particles. Here, Re =aU/ν is the particle Reynolds number, where a is the radius of the spherical particle, U its settling velocity, and ν the kinematic viscosity of the suspending fluid. The theory assumes the disturbance velocity field at sufficiently large distances from a sedimenting particle, even at small Re, to possess the familiar source--sink character; that is, the momentum defect brought in via a narrow wake behind the particle is convected radially outwards in the remaining directions. It is then argued that for spherical clusters with sufficiently many particles, specifically with N much greater than O(R0U/ν), the initial evolution is strongly influenced by wake-mediated interactions; here, N is the total number of particles, and R0 is the initial cluster radius. As a result, the cluster first evolves into a nearly planar configuration with an asymptotically small aspect ratio of O(R0U/N ν), the plane of the cluster being perpendicular to the direction of gravity; subsequent expansion occurs with an unchanged aspect ratio. For relatively sparse clusters with N smaller than O(R0U/ν), the probability of wake interactions remains negligible, and the cluster expands while retaining its spherical shape. The long-time expansion in the former case, and that for all times in the latter case, is driven by disturbance velocity fields produced by the particles outside their wakes. The resulting interactions between particles are therefore mutually repulsive with forces that obey an inverse-square law. The analysis presented describes cluster evolution in this regime. A continuum representation is adopted with the clusters being characterized by a number density field (n(r, t)), and a corresponding induced velocity field (u (r, t)) arising on account of interactions. For both planar axisymmetric clusters and spherical clusters with radial symmetry, the evolution equation admits a similarity solution; either cluster expands self-similarly for long times. The number density profiles at different times are functions of a similarity variable η = (r/t1/3), r being the radial distance away from the cluster centre, and t the time. The radius of the expanding cluster is found to be of the form Rcl (t) = Aa)1/3N1/3t1/3, where the constant of proportionality, A, is determined from an analytical solution of the evolution equation; one finds A = 1.743 and 1.651 for planar and spherical clusters, respectively. The number density profile in a planar axisymmetric cluster is also obtained numerically as a solution of the initial value problem for a canonical (Gaussian) initial condition. The numerical results compare well with theoretical predictions, and demonstrate the asymptotic stability of the similarity solution in two dimensions for long times, at least for axisymmetric initial conditions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3