The interaction of a shock wave with a laminar boundary layer at a compression corner in high-enthalpy flows including real gas effects

Author:

MALLINSON S. G.,GAI S. L.,MUDFORD N. R.

Abstract

The high-enthalpy, hypersonic flow over a compression corner has been examined experimentally and theoretically. Surface static pressure and heat transfer distributions, along with some flow visualization data, were obtained in a free-piston shock tunnel operating at enthalpies ranging from 3 MJ kg−1 to 19 MJ kg−1, with the Mach number varying from 7.5 to 9.0 and the Reynolds number based on upstream fetch from 2.7×104 to 2.7×105. The flow was laminar throughout. The experimental data compared well with theories valid for perfect gas flow and with other relevant low-to-moderate enthalpy data, suggesting that for the current experimental conditions, the real gas effects on shock wave/boundary layer interaction are negligible. The flat-plate similarity theory has been extended to include equilibrium real gas effects. While this theory is not applicable to the current experimental conditions, it has been employed here to determine the potential maximum effect of real gas behaviour. For the flat plate, only small differences between perfect gas and equilibrium gas flows are predicted, consistent with experimental observations. For the compression corner, a more rapid rise to the maximum pressure and heat transfer on the ramp face is predicted in the real gas flows, with the pressure lying slightly below, and the heat transfer slightly above, the perfect gas prediction. The increase in peak heat transfer is attributed to the reduction in boundary layer displacement thickness due to real gas effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3