Buoyancy-driven convection in cylindrical geometries

Author:

Liang S. F.,Vidal A.,Acrivos Andreas

Abstract

Numerical solutions to the Boussinesq equations containing a temperature-dependent viscosity are presented for the case of axisymmetric buoyancy-driven convective flow in a cylindrical cell. Two solutions, one with upflow and the other with downflow at the centre of the cell, were found for each set of boundary conditions that were considered. The existence of these two steady-state régimes was verified experimentally for the case of a cylindrical cell having rigid insulating lateral boundaries and isothermal top and bottom planes.Using a perturbation expansion it is also shown that only one of these solutions remains stable in the subcritical régime. This, however, seems to be confined to a very narrow range of Rayleigh numbers, beyond which, according to all the evidence presently at hand, both solutions are equally stable for those values of the Rayleigh and Prandtl numbers for which axisymmetric motions occur.Finally, certain fundamental differences between the problem considered here and that of thermal convection in a layer of infinite horizontal extent are briefly discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3