Transient and steady state of a rising bubble in a viscoelastic fluid

Author:

PILLAPAKKAM SHRIRAM B.,SINGH PUSHPENDRA,BLACKMORE DENIS,AUBRY NADINE

Abstract

A finite element code based on the level-set method is used to perform direct numerical simulations (DNS) of the transient and steady-state motion of bubbles rising in a viscoelastic liquid modelled by the Oldroyd-B constitutive equation. The role of the governing dimensionless parameters, the capillary number (Ca), the Deborah number (De) and the polymer concentration parameter c, in both the rising speed and the deformation of the bubbles is studied. Simulations show that there exists a critical bubble volume at which there is a sharp increase in the terminal velocity with increasing bubble volume, similar to the behaviour observed in experiments, and that the shape of both the bubble and its wake structure changes fundamentally at that critical volume value. The bubbles with volumes smaller than the critical volume are prolate shaped while those with volumes larger than the critical volume have cusp-like trailing ends. In the latter situation, we show that there is a net force in the upward direction because the surface tension no longer integrates to zero. In addition, the structure of the wake of a bubble with a volume smaller than the critical volume is similar to that of a bubble rising in a Newtonian fluid, whereas the wake structure of a bubble with a volume larger than the critical value is strikingly different. Specifically, in addition to the vortex ring located at the equator of the bubble similar to the one present for a Newtonian fluid, a vortex ring is also present in the wake of a larger bubble, with a circulation of opposite sign, thus corresponding to the formation of a negative wake. This not only coincides with the appearance of a cusp-like trailing end of the rising bubble but also propels the bubble, the direction of the fluid velocity behind the bubble being in the opposite direction to that of the bubble. These DNS results are in agreement with experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3