Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere

Author:

GHIDERSA BRĂDUŢ,DUšEK JAN

Abstract

The primary and secondary instabilities of the sphere wake are investigated from the viewpoint of nonlinear dynamical systems theory. For the primary bifurcation, a theory of axisymmetry breaking by a regular bifurcation is given. The azimuthal spectral modes are shown to coincide with nonlinear modes of the instability, which provides a good reason for using the azimuthal expansion as an optimal spectral method. Thorough numerical testing of the implemented spectral–spectral-element discretization allows corroboration of existing data concerning the primary and secondary thresholds and gives their error estimates. The ideal axisymmetry of the numerical method makes it possible to confirm the theoretical conclusion concerning the arbitrariness of selection of the symmetry plane that arises. Investigation of computed azimuthal modes yields a simple explanation of the origin of the so-called bifid wake and shows at each Reynolds number the coexistence of a simple wake and a bifid wake zone of the steady non-axisymmetric regime. At the onset of the secondary instability, basic linear and nonlinear characteristics including the normalized Landau constant are given. The periodic regime is described as a limit cycle and the power of the time Fourier expansion is illustrated by reproducing experimental r.m.s. fluctuation charts of the streamwise velocity with only the fundamental and second harmonic modes. Each time–azimuthal mode is shown to behave like a propagating wave having a specific spatial signature. Their asymptotic, far-wake, phase velocities are the same but the waves keep a fingerprint of their passing through the near-wake region. The non-dimensionalized asymptotic phase velocity is close to that of an infinite cylinder wake. A reduced-accuracy discretization is shown to allow qualitatively satisfactory unsteady simulations at extremely low cost.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3