Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock–spherical fast/slow bubble interactions

Author:

ZABUSKY N. J.,ZENG S. M.

Abstract

Collapsing shock-bounded cavities in fast/slow (F/S) spherical and near-spherical configurations give rise to expelled jets and vortex rings. In this paper, we simulate with the Euler equations planar shocks interacting with an R12 axisymmetric spherical bubble. We visualize and quantify results that show evolving upstream and downstream complex wave patterns and emphasize the appearance of vortex rings. We examine how the magnitude of these structures scales with Mach number. The collapsing shock cavity within the bubble causes secondary shock refractions on the interface and an expelled weak jet at low Mach number. At higher Mach numbers (e.g. M=2.5) ‘vortical projectiles’ (VP) appear on the downstream side of the bubble. The primary VP arises from the delayed conical vortex layer generated at the Mach disk which forms as a result of the interaction of the curved incoming shock waves that collide on the downstream side of the bubble. These rings grow in a self-similar manner and their circulation is a function of the incoming shock Mach number. At M=5.0, it is of the same order of magnitude as the primary negative circulation deposited on the bubble interface. Also at M=2.5 and 5.0 a double vortex layer arises near the apex of the bubble and moves off the interface. It evolves into a VP, an asymmetric diffuse double ring, and moves radially beyond the apex of the bubble. Our simulations of the Euler equations were done with a second-order-accurate Harten–Yee-type upwind TVD scheme with an approximate Riemann Solver on mesh resolution of 803×123 with a bubble of radius 55 zones.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3