Turbulent mixing at a shear-free density interface

Author:

Hannoun Imad A.,List E. John

Abstract

The interaction of a sharp density interface with oscillating-grid-induced shear-free turbulence was experimentally investigated. A linear photodiode array was used in conjunction with laser-induced fluorescence to measure the concentration of dye that was initially only in the less dense layer. A laser-Doppler velocimeter was used to measure the vertical velocity in and above the density interface at a point where the dye concentration was also measured. Potential refractive-index-fluctuation problems were avoided using solutes that provided a homogeneous optical environment across the density interface. Internal wave spectra, amplitudes and velocities, as well as the vertical mass flux were measured. The results indicate that mixing occurs in intermittent bursts and that the gradient (local) Richardson number remains constant for a certain range of the overall Richardson number Rj, defined in terms of an integral lengthscale, buoyancy jump and turbulence intensity. The spectra of the internal waves decay as f−3 at frequencies below the maximum Brunt-Väisälä frequency. These findings give support to a model for oceanic mixing proposed by Phillips (1977) in which the internal waves are limited in their spectral density by sporadic local instabilities and breakdown to turbulence. The results also indicate that, for a certain Rj range, the thickness of the interfacial layer (normalized by the integral lengthscale of the turbulence) is a decreasing function of Rj. At sufficiently high Rj the interfacial thickness becomes limited by diffusive effects. Finally, we discuss a simple model for entrainment at a density interface in the presence of shear-free turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference40 articles.

1. Turner, J. S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.

2. Fernando, H. J. S. & Long, R. R. 1983 The growth of a grid-generated turbulent mixed layer in a two-fluid system.J. Fluid Mech. 133,377.

3. Denton, R. A. & Wood, I. R. 1981 Penetrative convection at low Péclet number.J. Fluid Mech. 113,1.

4. Gartrell, G. 1979 Studies on the mixing in a density-stratified shear flow. Ph.D. thesis.California Institute of Technology.

5. Linden, P. F. 1975 The deepening of a mixed layer in a stratified fluid.J. Fluid Mech. 71,385.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3