Evolution of weakly nonlinear waves in a cylinder with a movable piston

Author:

Wang Meng,Kassoy D. R.

Abstract

Small-amplitude wave motion in an inert gas confined between a moving piston and a fixed cylinder endwall is studied using the unsteady Euler equations. The waves, generated by either initial disturbances or piston motion, reflect back and forth in the cylinder on the acoustic timescale. The accumulated effect of these waves controls the bulk variations of velocity and thermodynamic variables on the longer piston timescale. Perturbation methods, based on the small ratio of acoustic to piston time, are employed to formulate the gasdynamic problem. The application of multiple timescaling allows the gasdynamic wave field to be separated from the bulk response of the gas. The evolution of the wave phenomena, including nonlinear wave deformation and weak shock formation during the piston passage time, is described in terms of time-dependent Fourier series solutions, whose coefficients are computed from a truncated system of coupled nonlinear ordinary differential equations. The long-time asymptotic flow field after shock formation is sawtooth-like, in which case the Fourier modes become decoupled. A remarkably simple relation between the shock amplitude and piston velocity is discovered. It is demonstrated that (i) the wave amplitude and frequency strongly depend on the piston motion; (ii) shock waves can be damped in a significant way by internal dissipation; and (iii) the mathematical approach developed in this study possesses certain advantages over the more traditional method of characteristics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Wang, M. :1989 Piston generated dynamic compression and expansion of an inert gas in a cylinder. Ph.D thesis,University of Colorado,Boulder.

2. Chester, W. :1964 Resonant oscillations in closed tubes.J. Fluid Mech. 18,44–64.

3. Gear, C. W. :1971 Numerical Initial Value Problems in Ordinary Differential Equations .Prentice-Hall.

4. Temkin, S. :1969 Propagating and standing sawtooth waves.J. Acoust. Soc. Am. 45,224–227.

5. Lax, P. D. :1973 Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves.SIAM Regional Conference Series in Applied Mathematics, Vol.11.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3