Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation

Author:

WEISS DANIEL A.,YARIN ALEXANDER L.

Abstract

Single drop impact onto liquid films is simulated numerically. Surface tension and gravity are taken into account, whereas viscosity and compressibility are neglected. This permits recourse to a boundary-integral method, based on an integral equation for a scalar velocity potential. Calculations are performed for normal impacts resulting in axisymmetric flows.For times that are small compared to the characteristic time of impact 2R/w0 (R being the drop radius, w0 its initial velocity towards the liquid film), it is found that a disk-like jet forms at the neck between the drop and the pre-existing liquid film, if the impact Weber number is high enough. This jet can pinch off a torus-shaped liquid volume at its tip or reconnect with the pre-existing liquid film, thus entraining a torus- shaped bubble. In reality, both the torus-shaped bubble and liquid torus will decay according to Rayleigh's capillary instability, thus breaking the cylindrical symmetry. This mechanism of bubble entrainment differs from those described in literature.For times that are comparable to or larger than the characteristic time of impact, capillary waves on the film, or the well-known crowns, are obtained again according to whether the impact Weber number is low or high enough.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3