The nonlinear evolution of zonally symmetric equatorial inertial instability

Author:

GRIFFITHS STEPHEN D.

Abstract

The inertial instability of equatorial shear flows is studied, with a view to understanding observed phenomena in the Earth's stratosphere and mesosphere. The basic state is a zonal flow of stratified fluid on an equatorial β-plane, with latitudinal shear. The simplest self-consistent model of the instability is used, so that the basic state and the disturbances are zonally symmetric, and a vertical diffusivity provides the scale selection. We study the interaction between the inertial instability, which takes the form of periodically varying disturbances in the vertical, and the mean flow, where ‘mean’ is a vertical mean.The weakly nonlinear regime is investigated analytically, for flows with an arbitrary dependence on latitude. An amplitude equation of the form dA/dt = Ak2A∫[mid ]A[mid ]2dt is derived for the disturbances, and the evolving stability properties of the mean flow are discussed. In the final steady state, the disturbances vanish, but there is a persistent mean flow change that stabilizes the flow. However, the magnitude of the mean flow change depends strongly on the initial conditions, so that the system has a long memory. The analysis is extended to include the effects of Rayleigh friction and Newtonian cooling, destroying the long-memory property.A more strongly nonlinear regime is investigated with the help of numerical simulations, extending the results up to the point where the instability leads to density contour overturning. The instability is shown to lead to a homogenization of f around the initially unstable region, where f is the Coriolis parameter, and is the vertical mean of the potential vorticity. As the instability evolves, the line of zero moves polewards, rather than equatorwards as might be expected from a simple self-neutralization argument.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3