On the dynamics of liquid spreading on solid surfaces

Author:

Ngan C. G.,V. E. B. Dussan

Abstract

Our main objective is to identify a boundary-value problem capable of describing the dynamics of fluids having moving contact lines. A number of models have been developed over the past decade and a half for describing the dynamics of just such fluid systems. We begin by discussing the deficiencies of the methods used in some of these investigations to evaluate the parameters introduced by their models. In this study we are concerned exclusively with the formulation of a boundary-value problem which can describe the dynamics of the fluids excluding that lying instantaneously in the immediate vicinity of the moving contact line. From this perspective, many of the approaches referred to above are equivalent, that is to say they give rise to velocity fields with the same asymptotic structure near the moving contact line. Part of our objecive is to show that this asymptotic structure has only one parameter. A substantial portion of our investigation is devoted to determining whether or not the velocity field in a particular experiment has this asymptotic structure, and to measuring the value of the parameter.More specifically, we use the shape of the fluid interface in the vicinity of the moving contact line to identify the asymptotic structure of the dynamics of the fluid. Experiments are performed in which silicone oil displaces air through a gap formed between two parallel narrowly-spaced glass microscope slides sealed along two opposing sides. Since we were unable to make direct measurements of the shape of the fluid interface close to the moving contact line, an indirect procedure has been devised for determining its shape from measurements of the apex height of the meniscus. We find that the deduced fluid interface shape compares well with the asymptotic form identified in the studies referred to above; however, systematic deviations do arise. The origin of these deviations is unclear. They could be attributed to systematic experimental error, or, to the fact that our analysis (valid only for small values of the capillary number) is inadequate at the conditions of our experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Abramowitz, M. & Stegun, I. 1964 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. NBS Appl. Maths Series No. 55,US Government Prining Office,Washington DC.

2. Joseph, D. D. 1977 The convergence of biorthogonal series for biharmonic and Stokes flow edge problems. Part. I.SIAM J. Appl. Maths 33,337.

3. Aussere, D. , Picard, A. M. & Leger, L. 1986 Existence and role of the precursor film in the spreading of polymer liquids.Phys. Rev. Lett. 57,2671.

4. White, C. 1983 Integration of stiff differential equations in chemical reactor modelling . PhD thesis,University of Pennsylvania.

5. Hardy, W. B. 1919 The spreading of liquids on glass.Philos. Mag. 38,49.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3