On the motion of ν-fluids

Author:

Proudman Ian

Abstract

The paper is concerned with a class of non-Newtonian fluids, ν-fluids, all of whose properties are determined by a single dimensional constant of the same dimensions as a viscosity. A regular nth-order ν-fluid is then defined to be one whose nth order time derivative of stress is a regular function of the local stress and flow fields and any of their space and time derivatives. The regularity condition determines the constitutive relation of such a fluid completely in terms of a finite set of non-dimensional constants which define the fluid.An obvious property of these fluids is that their motions obey the same principles of Reynolds number similarity as those of a Newtonian fluid, and the primary aim of the paper is to examine the extent to which their flow properties are the same as those of the mean turbulent flow of a Newtonian fluid.It is shown that a third-order fluid is the simplest ν-fluid which shares enough properties with turbulent motion to be worth further consideration in this context. At infinite Reynolds number, the constitutive relation for such a fluid reduces to the form \[ AS\ddot{S} + B\dot{S}^2 + CS^2 S^{\prime\prime} + DSS^{\prime 2} + Eu^{\prime 2}S^2 = 0, \] where A,B, …,E, are isotropic tensor constants of the fluid, S is the stress tensor, u’ is the total rate of strain tensor, dots denote total time derivatives, and primes denote space derivatives. A number of illustrative examples of the properties of such a constitutive relation are then considered, representing the decay of a homogenous stress field, the effect of rigid-body rotation on such a decay, the structure of the equilibrium stress field in the presence of homogeneous rate of strain, both with and without vorticity, and the nature of flow near a plane boundary. In all cases, the results appear to be consistent with known properties of turbulent motion, to the extent that the analysis is taken.Finally, the effect of finite Reynolds number on the decay of an isotropic and homogeneous stress field is shown to be consistent with observations on the decay of isotropic turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference3 articles.

1. Batchelor, G. K. & Townsend, A. A. 1948 Proc. Roy. Soc. A193,539.

2. Lumley, J. L. 1970 J. Fluid Mech. 41,41.

3. Townsend, A. A. 1956 Structure of Turbulent Shear Flows. Cambridge University Press.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling turbulent-bounded flow using non-Newtonian viscometric functions;Journal of Turbulence;2011-01

2. On modelling the Reynolds stress in the context of continuum mechanics;Communications in Nonlinear Science and Numerical Simulation;2004-10

3. Reynolds stress model involving the mean spin tensor;Physical Review E;2004-09-03

4. The natural viscosity of turbulence;Journal of Turbulence;2003-12-01

5. On material frame-indifference of turbulence closure models;Geophysical & Astrophysical Fluid Dynamics;1987-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3