On Stokes flow in a semi-infinite wedge

Author:

SHANKAR P. N.

Abstract

Consider Stokes flow in the semi-infinite wedge bounded by the sidewalls ϕ = ±α and the endwall z = 0. Viscous fluid fills the region 0 < r < ∞, 0 < z < ∞ bounded by these planes; the motion of the fluid is driven by boundary data given on the endwall z = 0. A consequence of the linearity of the problem is that one can treat the velocity field q(r, ϕ, z) as the sum of a field qa(r, ϕ, z) antisymmetric in ϕ and one symmetric in it, qs(r, ϕ, z). It is shown in each of these cases that there exists a real vector eigenfunction sequence vn(r, ϕ, z) and a complex vector eigenfunction sequence un(r, ϕ, z), each member of which satisfies the sidewall no-slip condition and has a z-behaviour of the form ekz. It is then shown that one can, for each case, write down a formal representation for the velocity field as an infinite integral over k of the sums of the real and complex eigenfunctions, each multiplied by unknown real and complex scalar functions bn(k) and an(k), respectively, that have to be determined from the endwall boundary conditions. A method of doing this using Laguerre functions and least squares is developed. Flow fields deduced by this method for given boundary data show interesting vortical structures. Assuming that the set of eigenfunctions is complete and that the relevant series are convergent and that they converge to the boundary data, it is shown that, in general, there is an infinite sequence of corner eddies in the neighbourhood of the edge r = 0 in the antisymmetric case but not in the symmetric case. The same conclusion was reached earlier for the infinite wedge by Sano & Hasimoto (1980) and Moffatt & Mak (1999). A difficulty in the symmetric case when 2α = π/2, caused by the merger of two real eigenfunctions, has yet to be resolved.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moffatt eddies in electrohydrodynamics flows: numerical simulations and analyses;Journal of Fluid Mechanics;2022-12-06

2. Leading-order Stokes flows near a corner;IMA Journal of Applied Mathematics;2018-07-25

3. The Lid-Driven Cavity;Computational Methods in Applied Sciences;2018-07-07

4. Inertial effects on the generation of co-laminar flows;Journal of Fluid Mechanics;2015-02-12

5. Are there localized eddies in the trihedral corners of the Stokes eigenmodes in cubical cavity?;Computers & Fluids;2011-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3