The influence of viscosity on the frozen wave instability: theory and experiment

Author:

TALIB EMMA,JALIKOP SHREYAS V.,JUEL ANNE

Abstract

We present the results of an experimental and linear stability study of the influence of viscosity on the frozen wave (FW) instability, which arises when a vessel containing stably stratified layers of immiscible liquids is oscillated horizontally. Our linear stability model consists of two superposed fluid layers of arbitrary viscosities and infinite lateral extent, subject to horizontal oscillation. The effect of the endwalls of the experimental vessel is simulated by enforcing the conservation of horizontal volume flux, so that the base flow consists of counterflowing layers.We perform experiments with four pairs of fluids, keeping the viscosity of the lower layer (ν1) constant, and increasing the viscosity of the upper layer (ν2), so that 1.02 × 102N1 = ν21 ≤ 1.21 × 104. We find excellent quantitative agreement between theory and experiment despite the simple model geometry, for both the critical onset parameter and wavenumber of the FW. We show that the model of lyubimov:1987 (Fluid Dyn. vol. 86, 1987, p. 849), which is valid in the limit of inviscid fluids, consistently underestimates the instability threshold for fluids of equal viscosity, but generally overestimates the threshold for fluids of unequal viscosity. We extend the experimental parameter range numerically to viscosity contrasts 1 ≤ N1 ≤ 6 × 104 and identify four regions of N1 where qualitatively different dynamics occur, which are reflected in the non-monotonic dependence of the most unstable wavenumber and the critical amplitude on N1. In particular, we find that increasing the viscosity contrast between the layers leads to destabilization over a wide range of N1, 10 ≤ N1 ≤ 8 × 103. The intricate dependence of the instability on viscosity contrast is due to considerable changes in the time-averaged perturbation vorticity distribution near the interface.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3