Numerical modelling of finite-amplitude electro-thermo-convection in a dielectric liquid layer subjected to both unipolar injection and temperature gradient

Author:

TRAORÉ PH.,PÉREZ A. T.,KOULOVA D.,ROMAT H.

Abstract

In this paper, we solve numerically the entire set of equations associated with the electro-thermo-convective phenomena that take place in a planar layer of dielectric liquid heated from below and subjected to unipolar injection. For the first time the whole set of coupled equations is solved: Navier–Stokes equations, electrohydrodynamic (EHD) equations and the energy equation. We first validate the numerical simulation by comparing the electro-convection stability criteria with ones obtained with a stability approach. The numerical solution of the electro-thermo-convection problem is then presented entirely with a detailed analysis of stability parameters. In particular, the relation between fluid velocity, non-dimensional electrical parameter T, Rayleigh number Ra and Prandtl number Pr is given. An analytical model is presented in order to understand the flow behaviour at some critical conditions. The way that the onset of motion passes from purely electrical convection to purely thermal convection is, in particular, investigated and explained in detail. Finally, a result on the heat transfer enhancement due to electro-convection is exhibited and compared with data from experimental works available in this field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. A nonlinear electrohydrodynamic stability analysis of a thermally stabilized plane layer of dielectric liquid

2. A hydraulic model of electrothermal convection in a plane layer of dielectric liquid;Richardson;PhysicoChem. Hydrodyn.,1988

3. Martin P. J. 1982 Electrohydrodynamic instabilities in a horizontal layer of dielectric liquid heated from above and subjected to a DC electric field. Doctoral thesis, University of Bristol, Bristol, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3