Onset of convection in a moderate aspect-ratio rotating cylinder: Eckhaus–Benjamin–Feir instability

Author:

LOPEZ J. M.,MARQUES F.,MERCADER I.,BATISTE O.

Abstract

A numerical study of the onset of thermal convection in a rotating circular cylinder of radius-to-depth ratio equal to four is considered in a regime dominated by the Coriolis force where the onset is to so-called wall modes. The wall modes consist of hot and cold pairs of thermal plumes rising and descending in the cylinder wall boundary layer, forming an essentially one-dimensional pattern characterized by the number of hot/cold plume pairs, m. In the limit of zero centrifugal force, this onset of convection at a critical temperature difference across the depth of the cylinder is via a symmetry-breaking supercritical Hopf bifurcation which leads to retrograde precession of the pattern with respect to the rotation of the cylinder. For temperature differences greater than critical, a number of distinct wall modes, distinguished by m, coexist and are stable. Their dynamics are controlled by an Eckhaus–Benjamin–Feir instability, the most basic features of which had been captured by a complex Ginzburg–Landau equation model. Here, we analyse this instability in rotating convection using direct numerical simulations of the Navier–Stokes equations in the Boussinesq approximation. Several properties of the wall modes are computed, extending the results to far beyond the onset of convection. Extensive favourable comparisons between our numerical results and previous experimental observations and complex Ginzburg–Landau model results are made.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference43 articles.

1. Traveling-wave wall states in rotating Rayleigh–Bénard convection;Kuo;Phys. Rev.,1993

2. A study of Bénard convection with and without rotation;Rossby;J. Fluid Mech.,1967

3. Dynamics and symmetry. Predictions for modulated waves in rotating fluids

4. Nonlinear traveling waves in rotating Rayleigh–Bénard convection: stability boundaries and phase diffusion;Liu;Phys. Rev.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3