Microscale pressure fluctuations measured within the lower atmospheric boundary layer

Author:

Elliott J. A.

Abstract

Eulerian measurements of microscale fluctuations in static pressure are used, in conjunction with measurements of air velocity, to describe some of the properties of the static pressure fluctuations that occur within the turbulent flow of the lower atmospheric boundary layer. Using an instrument developed to measure the static pressure at a point within the boundary layer, data were collected at heights ranging from the surface up to about 6 m. The results are presented as power spectra, cross-spectra, coherence and phase. For all observations over a flat boundary the root-mean-square pressure produced by the boundary-layer turbulence is about 2.6 times the mean stress. The pressure spectra are found to have a, well-defined shape which does not change with height above the surface; at the higher frequencies the spectra show a power-law behaviour with a mean slope of −1·7. A number of observations with two pressure sensors are used to describe the structure and propagation velocity of individual pressure pulses.A dominant feature of the pressure-velocity relationship is that the large-scale pressure fluctuations are approximately in phase with the downstream velocity fluctuations; at small scales there is a large phase difference (∼−135°). These phase differences are interpreted to be the result of interaction of the large pressure-producing scales with the earth's surface, the small scales being ‘free’ of the surface. Prom the simultaneous measurements of pressure and downstream velocity the effect of pressure forces on the energy flux out of the downstream velocity fluctuations was evaluated. Typical values are about 0-45 of the net energy source to the downstream component. By means of pressure and vertical velocity measurements an estimate of the pressure divergence term in the net energy budget of a boundary layer is made. It was found to be about 1/10 of the energy feeding term.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Weiler, H. S. & Burling, R. W. 1967 J. Atron. Sci. 24,653.

2. Blackman, R. B. & Tukey, J. W. 1959 The Measurement of Power Spectra .Dover.

3. Golitsyn, G. S. 1964 Izv. Geophys. Ser. 8,1253.(See also Trans. Am. Geophys. Un. 8, 761.)

4. Elliott, J. A. 1970 Ph.D. dissertation,Institute of Oceanography, University of British Columbia.

5. Hinze, J. O. 1959 Turbulence. MeGraw-Hill.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3