Turbulent drag reduction with polymer additive in rough pipes

Author:

YANG SHU-QING,DOU G.

Abstract

Friction factor of drag-reducing flow with presence of polymers in a rough pipe has been investigated based on the eddy diffusivity model, which shows that the ratio of effective viscosity caused by polymers to kinematic viscosity of fluid should be proportional to the Reynolds number, i.e. uR/ν and the proportionality factor depends on polymer's type and concentration. A formula of flow resistance covering all regions from laminar, transitional and fully turbulent flows has been derived, and it is valid in hydraulically smooth, transitional and fully rough regimes. This new formula has been tested against Nikuradse and Virk's experimental data in both Newtonian and non-Newtonian fluid flows. The agreement between the measured and predicted friction factors is satisfactory, indicating that the addition of polymer into Newtonian fluid flow leads to the non-zero effective viscosity and it also thickens the viscous sublayer, subsequently the drag is reduced. The investigation shows that the effect of polymer also changes the velocity at the top of roughness elements. Both experimental data and theoretical predictions indicate that, if same polymer solution is used, the drag reduction (DR) in roughened pipes becomes smaller relative to smooth pipe flows at the same Reynolds number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3