Length-scale distribution functions and conditional means for various fields in turbulence

Author:

WANG LIPO,PETERS NORBERT

Abstract

Dissipation elements are identified for various direct numerical simulation (DNS) fields of homogeneous shear turbulence. The fields are those of the fluctuations of a passive scalar, of the three components of velocity and vorticity, of the second invariant of the velocity gradient tensor, turbulent kinetic energy and viscous dissipation. In each of these fields trajectories starting from every grid point are calculated in the direction of ascending and descending gradients, reaching a local maximum and minimum point, respectively. Dissipation elements are defined as spatial regions containing all the grid points from which the same pair of minimum and maximum points is reached. They are parameterized by the linear length between these points and the difference of the field variable at these points.In analysing the changes that occur during one time step in the linear length as well as in the number of grid points contained in the elements, it is found that rapid splitting and attachment processes occur between elements. These processes are much more frequent than the previously identified processes of cutting and reconnection. The model for the length-scale distribution function that had previously been proposed is modified to include these additional processes. Comparisons of the length-scale distribution function for the various fields with the proposed model show satisfactory agreement.The conditional mean difference of the field variable at the minimum and maximum points of dissipation elements is calculated for the passive scalar field and the three components of velocity. While the conditional mean difference follows the 1/3 inertial-range Kolmogorov scaling for the passive scalar field, the scaling exponent differs from the 1/3 law for each of the three components of velocity. This is thought to be due to the relatively high shear rate of the DNS calculations.The conditional mean viscous dissipation shows, differently from all other field variables analysed, a pronounced dependence on the linear length of elements. This is explained by intermittency. This finding is used to evaluate the production and the dissipation term of the empirically derived ϵ-equation that is often used in engineering calculations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3