Experimental study and nonlinear dynamic analysis of time-periodic micro chaotic mixers

Author:

LEE YI-KUEN,SHIH CHIANG,TABELING PATRICK,HO CHIH-MING

Abstract

The efficiency of MEMS-based time-periodic micro chaotic mixers is experimentally and theoretically investigated in this study. A time-periodic flow perturbation was realized using digitally controlled solenoid valves to activate a source and sink alternately, acting together as a pair, with different driving frequencies. Working fluids with and without fluorescent dye were used in the micromixing experiments. The spatio-temporal variation of the mixing concentration during the mixing process was characterized at different Strouhal numbers, ranging from 0.03 to 0.74, using fluorescence microscopy. A simple kinematical model for the micromixer was used to demonstrate the presence of chaotic mixing. Specific stretching rate, Lyapunov exponent, and local bifurcation and Poincaré section analyses were used to identify the emergence of chaos. Two different numerical methods were employed to verify that the maximum Lyapunov exponent was positive in the proposed micromixer model. A simplified analytical analysis of the effect of Strouhal number is presented. Kolmogorov–Arnold–Mose (KAM) curves, which are mixing barriers, were also found in Poincaré sections. From a comparative study of the experimental results and theoretical analysis, a finite-time Lyapunov exponent (FTLE) was shown to be a more practical mixing index than the classical Lyapunov exponent because the time spent in mixing is the main concern in practical applications, such as bio-medical diagnosis. In addition, the FTLE takes into account both fluid stretching in terms of the stretching rate and fluid folding in terms of curvature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characteristics analysis of the side-blown gas jet mixing process;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-09-29

2. Generalized Lagrangian coherent structures;Physica D: Nonlinear Phenomena;2018-06

3. Transport between Two Fluids across Their Mutual Flow Interface: The Streakline Approach;SIAM Journal on Applied Dynamical Systems;2017-01

4. Hyperbolic neighbourhoods as organizers of finite-time exponential stretching;Journal of Fluid Mechanics;2016-10-20

5. Analysis of a cross-channel micromixer through the dynamics of tracer gradient;Journal of Theoretical and Applied Mechanics;2016-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3