On the reflection and transmission of sound in a thick shear layer

Author:

CAMPOS L. M. B. C.,KOBAYASHI M. H.

Abstract

The propagation of sound across a shear layer of finite thickness is studied using exact solutions of the acoustic wave equation for a shear flow with hyperbolic-tangent velocity profile. The wave equation has up to four regular singularities: two corresponding to the upper and lower free streams; one corresponding to a critical layer, where the Doppler-shifted frequency vanishes if the free streams are supersonic; and a fourth singularity which is always outside the physical region of interest. In the absence of a critical layer the matching of the two solutions, around the upper and lower free streams, specifies exactly the acoustic field across the shear layer. For example, for a sound wave incident from below (i.e. upward propagation in the lower free stream), the reflected wave (i.e. downward propagating in the lower free stream) and the transmitted wave (i.e. upward propagating in upper free stream) are specified by the continuity of acoustic pressure and vertical displacement. Thus the reflection and transmission coefficients, which are generally complex, i.e. involve amplitude and phase changes, are plotted versus angle of incidence for several values of free stream Mach number, and ratio of thickness of the shear layer to the wavelength; the vortex sheet is the particular case when the latter parameter is zero. The modulus and phase of the total acoustic field are also plotted versus the coordinate transverse to the shear flow, for several values of angle of incidence, Mach number and shear layer thickness. The analysis and plots in the present paper demonstrate significant differences between sound scattering by a shear layer of finite thickness, and the limiting case of the vortex sheet.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3